Math Virtual Learning

College Prep Algebra

April 14, 2020

College Prep Algebra Lesson: April 14, 2020

Objective/Learning Target:

Use properties of logarithms to expand and condense logarithmic expressions

Let's get started:
Recall the video from $4 / 13$. I wonder how they would have used the charts to find $\log 1,210,000$?

Lesson:

When working with logarithmic expressions, the expression is classified by how much "stuff" there is to describe the logarithmic value.

The words we use to classify are

- Condensed (to make as compact as possible)
- Expanded (to spread out as much as possible)

The next slide will show you examples of Condensed and Expanded logarithms.

Lesson: Here are the examples from $4 / 13$

PROdUCT PROPERTY

 that you discovered!$$
\square \log _{17} 24=\log _{17} 4+\log _{17} 6
$$ Condensed Expanded

Quotient PROPERTY

$$
\square \log _{\text {Condensed }} 3=\log _{13} 21-\log _{13} 7
$$

POWER PROPERTY

$\square \log _{4}(10)^{2}=2 \cdot \log _{4}(10)$

 Condensed Expanded
Lesson: Condensed and Expanded Logarithms Examples

$$
\begin{aligned}
\log _{17} 24 & =\log _{17} 4+\log _{17} 6 \\
& =\log _{17}\left(2^{2}\right)+\log _{17}(2 \cdot 3) \\
& =2 \cdot \log _{17} 2+\log _{17} 2+\log _{17} 3
\end{aligned}
$$

Notice that Expanded can look many different ways, but the Condensed is the most simplified of all.

Lesson:

So going back to the video from $4 / 13$, he used the pieces to calculate, not the whole thing.

That is why we EXPAND logarithms. If we were still using the logarithm charts, it would be easier to look up the pieces of the expanded version!

ANTILOGARITHMS

	0	1	2		4	5	6	7	8	8	123	458	789
-00	1000	1009	10	100	1000	1012	1014	1015	19	10	-	$1: 1$	
-01	tos	1006	102	toyo	1033	1035		O	1043	tas5			3
- 4	1047	1050	1051	1054	1057	1059	1062	1064	1067	t069	-o	11	222
-09	1072	1074	1076	1079	105t	told	tof	to89	1091	1094	00. 1	11	222
-04	1096	1099	1102	1194	1107	1109	1113	111.	1117	1119	-1	$1:$	22
O5	11	1125	1227	1130	1133	1235	2138	1140	1143	1246			12
-00	1148	1151	1153	1156	1159	1161	1164	1167	1169	1173	O1 1		22
0	2175	1178	11	THS_{3}	7186	1189	779:	1794	1197	1199	O1 1		22
-08	\%	1205	1208	1211	1313	131	1219	12	1235	1237	O1 1	1	23
-08	1230	1231	1236	1239	1341	124	1247	1290	1353	1256	-1	1	223
- 1	12	. 5	1265	1368	1371	1374	1376	1379	1283	1285	or t	tta	223
	18	1291	1394	1297	1300	1303	1306	1309	$\frac{1342}{131}$	1315	0) 11	132	13 32
-19	1318	1321	1334	1327	t390	134	${ }^{1317}$	7340	:343	1346	or 1	123	323
-1	1349	${ }^{13} 182$	1355	1358	${ }^{13} 61$	1365	1368	1371	${ }^{1374}$	1377	Ot 1	\% 2	233
-	13	134	13 M	1390	1393	1396	1400	1403	1406	1409	- 1	123	233

Practice:

Lucky for us, we only have to show we can EXPAND and CONDENSE. That is the technique colleges ask us to learn. So try it yourself, expand and condense the expressions below.

EXPAND		CONDENSE
16. $\log 10 x$	19. $\log _{4} 4 x^{2}$	23. $\log 7-\log x$
17. $\ln \frac{x y}{z}$	20. $\log _{3} \sqrt{x-2}$	24. $3 \ln x+2 \ln y-4 \ln z$
18. $\log _{b} \frac{x^{4}}{z^{2}}$	21. $\ln ^{\frac{x^{5}}{}{ }^{2}}$	25. $\frac{3}{2} \ln x^{6}-\frac{3}{4} \ln x^{8}$
		26. $\log _{2} 5+\log _{2} x-\log _{2} 3$
		$27.1+3 \log _{4} x$
		$28.2 \ln 8+5 \ln x$

Practice:

ANSWERS

EXPAND

CONDENSE

16. $1+\log x$
17. $\ln x+\ln y-\ln z$
18. $4 \log _{b} x-2 \log _{b} z$
19. $1+2 \log _{4} x$
20. $\frac{1}{2} \log _{3}(x-2)$
21. $(5 \ln x+2 \ln z)-3 \ln y$
22. $\log \frac{7}{x}$
23. $\ln \frac{x^{3} y^{2}}{z^{4}}$
24. $\ln x^{3}$
25. $\log _{2} \frac{5 x}{3}$
26. $\log _{4} 4 x^{3}$
27. $\ln 64 x^{5}$

Additional Practice

Expanding and Condensing Simple Logarithms

Expanding more complicated Logarithms

